The statistics and mathematics of high dimension low sample size asymptotics
نویسندگان
چکیده
منابع مشابه
Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds
SUNGKYU JUNG: Asymptotics for High Dimension, Low Sample Size data and Analysis of Data on Manifolds. (Under the direction of Dr. J. S. Marron.) The dissertation consists of two research topics regarding modern non-standard data analytic situations. In particular, data under the High Dimension, Low Sample Size (HDLSS) situation and data lying on manifolds are analyzed. These situations are rela...
متن کاملBoundary behavior in High Dimension, Low Sample Size asymptotics of PCA
In High Dimension, Low Sample Size (HDLSS) data situations, where the dimension d is much larger than the sample size n, principal component analysis (PCA) plays an important role in statistical analysis. Under which conditions does the sample PCA well reflect the population covariance structure? We answer this question in a relevant asymptotic context where d grows and n is fixed, under a gene...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولGeometric representation of high dimension, low sample size data
High dimension, low sample size data are emerging in various areas of science. We find a common structure underlying many such data sets by using a non-standard type of asymptotics: the dimension tends to 1 while the sample size is fixed. Our analysis shows a tendency for the data to lie deterministically at the vertices of a regular simplex. Essentially all the randomness in the data appears o...
متن کاملDeep Neural Networks for High Dimension, Low Sample Size Data
Deep neural networks (DNN) have achieved breakthroughs in applications with large sample size. However, when facing high dimension, low sample size (HDLSS) data, such as the phenotype prediction problem using genetic data in bioinformatics, DNN suffers from overfitting and high-variance gradients. In this paper, we propose a DNN model tailored for the HDLSS data, named Deep Neural Pursuit (DNP)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: STATISTICA SINICA
سال: 2017
ISSN: 1017-0405
DOI: 10.5705/ss.202015.0088